Metal-to-Particle Charge Transfer and its Role in Dye-Sensitized Solar Cells

Sadig Aghazada

GMF tutorial meeting
Prussian Blue

\[Fe_{3}^{IV} \left[Fe^{III} (CN)_{6} \right]_{4} \cdot xH_{2}O \]

Intervalence Charge Transfer (IVCT) band

Sadig Aghazada/ GMF group meeting
Robin-Day classification

Sadig Aghazada/ GMF group meeting
Efficient Visible Light Sensitization of TiO$_2$ by Surface Complexation with Fe(CN)$_6^{4-}$

Erni Vrachnou, Nicholas Vlachopoulos, and Michael Grätzel*

Institut de Chimie Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland

A coloured charge-transfer complex formed by adsorption of Fe(CN)$_6^{4-}$ at the surface of TiO$_2$ particles and electrodes upon photoexcitation injects electrons into the conduction band of this semiconductor with a quantum yield of at least 37%.

The deeply orange coloured surface complex is formed when TiO$_2$ colloid (particle size 12 nm, prepared as previously described9) or powder (Degussa P25, a mixture of ca. 75% anatase and 25% rutile) is added to a deaerated aqueous solution of K$_4$Fe(CN)$_6$. The reaction takes place readily at

$$[\text{Fe(CN)}_6^{4-}]_{\text{TiO}_2} \xrightarrow{\text{hv}} \text{e}^-_{\text{cb}} (\text{TiO}_2) + [\text{Fe(CN)}_6^{3-}]_{\text{TiO}_2}$$ (1) Very rapid

$$[\text{Fe(CN)}_6^{3-}]_{\text{TiO}_2} + \text{e}^-_{\text{cb}} (\text{TiO}_2) \rightarrow [\text{Fe(CN)}_6^{4-}]_{\text{TiO}_2}$$ (2) $2 \cdot 10^5 \text{ s}^{-1}$

Sadig Aghazada/ GMF group meeting
Photocurrent action spectrum

Figure 2. Photocurrent action spectrum obtained with Fe(CN)$_6^{4-}$-loaded anatase electrodes; conditions: 10$^{-2}$ M HClO$_4$, 10$^{-2}$ M hydroquinone electrode potential 0.2 V (S.C.E.), solution deaerated with Ar. Insert: Photocurrent–potential curve obtained under the same conditions at λ 440 nm.

Sadig Aghazada/ GMF group meeting
Note: No measurable change in the absorption spectrum when the concentration of LiClO$_4$ was varied from 0 to 1.0 M.
What if some cyanides are substituted with 2,2’-bipyridines?

*Fitted with two Gaussians
*Both MLCT

The spectra blueshift by 100 cm\(^{-1}\) and increase in intensity by about 10% when 0.5 M LiClO\(_4\) added

Note: oxidation potentials are strongly sensitive to solvent, while MPCT bands position are not.

Sadig Aghazada/ GMF group meeting

Inorg. Chem. 2000, 39, 3738-3739
Transient absorption spectra

Figure 3. Transient absorption difference spectra of Fe(bpy)(CN)$_4^{2-}$/TiO$_2$ in (a) neat acetonitrile at delay times of (■) 0 µs, (●) 0.2 µs, (▲) 0.4 µs, (▼) 0.6 µs, and (●) 0.8 µs and in (b) 0.5 M LiClO$_4$ acetonitrile recorded at delay times of (■) 0 µs, (●) 0.2 µs, (▲) 0.4 µs, (▼) 0.6 µs, and (●) 0.8 µs. The insets in panels a and b are kinetic traces collected at 500 nm under the corresponding conditions. The samples were excited with a pulsed 532.5 nm light (12 mL/pulse, fwhm 8 ns) at 25 °C under an argon atmosphere.

*Ground state recovery (2$^\text{nd}$ order equal-concentration kinetic model) - $k_{obs} = 3 \pm 2 \cdot 10^9 \text{s}^{-1}$

Sadig Aghazada/ GMF group meeting
Incident Photon-to-Current Conversion Efficiency

Figure 4. (a) Photoaction spectra of (■) Fe(bpy)(CN)$_4^{2-}$/TiO$_2$, (●) Fe(dpdb)(CN)$_4^{2-}$/TiO$_2$, and (▲) Fe(dmb)(CN)$_4^{2-}$/TiO$_2$, obtained at room temperature in LiI/I$_2$ acetonitrile solutions. The IPCE is the incident-photon-to-current efficiency. Additional details are given in the text. (b) Comparison of $1 - T$ spectrum of Fe(bpy)(CN)$_4^{2-}$/TiO$_2$ in 0.5 M LiClO$_4$ acetonitrile to the photoaction spectrum of Fe(bpy)(CN)$_4^{2-}$/TiO$_2$ in 0.5 M LiI/0.05 M I$_2$ acetonitrile.

What is the energy of an acceptor state?

Figure 1. UV−vis spectra of 2 nm TiO₂ nanoparticles in 50:50 water/ethylene glycol (solid line) and the resulting Fe³⁺(CN)₆⁴⁻−TiO₂(particulate) system (dotted line) at 298 K.

\[h\nu_{\text{max}} = \Delta G_b^0 + \lambda + \sqrt{4\lambda k_B T} \]

\[\Delta G_b^0 = E_C + eE_{M(CN)_n}^{0^0} + k_B T \ln \frac{K_{\text{red}}}{K_{\text{ox}}} \]

Sadig Aghazada/ GMF group meeting

J. Am. Chem. Soc. 2003, 125, 4637-4642
What is the energy of an acceptor state?

<table>
<thead>
<tr>
<th>M(CN)$_n^4$−</th>
<th>λ_{max}^a</th>
<th>ϵ_{max}^b</th>
<th>E^0^c</th>
<th>ΔG^0^d</th>
<th>$\lambda_{\text{max-calcd}}^e$</th>
<th>$\lambda_{\text{max-calcd}}^f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeIIC(CN)$_6^4$−</td>
<td>430</td>
<td>5000</td>
<td>0.36</td>
<td>0.50</td>
<td>700</td>
<td>530</td>
</tr>
<tr>
<td>RuII(CN)$_6^4$−</td>
<td>390</td>
<td>sh</td>
<td>0.86</td>
<td>1.00</td>
<td>540</td>
<td>440</td>
</tr>
<tr>
<td>MoIV(CN)$_6^4$−</td>
<td>438</td>
<td>1300</td>
<td>0.73</td>
<td>0.87</td>
<td>580</td>
<td>460</td>
</tr>
<tr>
<td>WIV(CN)$_6^4$−</td>
<td>480</td>
<td>1500</td>
<td>0.46</td>
<td>0.60</td>
<td>660</td>
<td>510</td>
</tr>
</tbody>
</table>

a Room temperature. b Calculated on the basis of the metal cyanide concentration. c vs NHE ref 35. d Calculated from eq 14 using $E_{cb} \approx -0.1$ eV and $k_BT \ln(K_{\text{red}}/K_{\text{ox}}) = 0.24$ eV. e Calculated from eq 13 using $\lambda = 1.0$ eV. f Calculated using eqs 13 and 14 with $\lambda = 1.0$ eV, $E_{cb} = +0.4$ eV, and $k_BT \ln(K_{\text{red}}/K_{\text{ox}}) = 0.24$ eV.

Sadig Aghazada/ GMF group meeting
Observation

Oxidation potential depends on solvent

$E_C \rightarrow E_T$

TiO_2

MPCT

Absorbance

Wavelength

$\text{Inorg. Chem. 2000, 39, 3738-3739}$

$\text{Inorg. Chem. 2002, 41, 1254-1262}$

Sadig Aghazada/ GMF group meeting
Observation

E_T - E_C anodic shift of oxidation potential

TiO_2

200-500 mV anodic shift of oxidation potential

Sadig Aghazada/ GMF group meeting

Inorg. Chem. 2000, 39, 3738-3739
What about the spatial location of the acceptor state?

Sadig Aghazada/ GMF group meeting
What about the spatial location of the acceptor state?

\[f_{osc} = \left(4.61 \times 10^{-9}\right) \varepsilon_{max} \Delta \nu_{1/2} \]

\[f_{osc} = \left(\frac{8\pi^2 m_e c v_{max}}{3he^2}\right) |\mu_{12}|^2 = \left(1.08 \times 10^{-5}\right) v_{max} |\mu_{12}|^2 \]

\[(H_D) = \left(9.2 \times 10^4\right) v_{max} f_{osc} = \left(4.0 \times 10^{-4}\right) v_{max} \int \varepsilon(v) dv \]

Sadig Aghazada/ GMF group meeting
Johannes Stark
Physics Nobel Prize laureate...
but unfortunately a strong supporter of Nazi regime.

https://en.wikipedia.org/wiki/Johannes_Stark
Stark/Electroabsorption Spectroscopy

\[
\bar{F}_{int} = f\bar{F}_{ext}
\]

\[
f = \frac{3D_S}{2D_S + 1}
\]

\[
\Delta A(\nu) = \left\{ A_\chi A(\nu) + \frac{B_\chi \nu}{15hc} \frac{d[A(\nu)/\nu]}{d\nu} + \frac{C_\chi \nu}{30h^2c^2} \frac{d^2[A(\nu)/\nu]}{d\nu^2} \right\} \bar{F}_{int}^2
\]

Figure 1. Electroabsorption (a) 77 K absorption spectrum with fit to gaussian curve. (b) Electroabsorption spectra (\(\chi = 54.7^\circ\)) with fit to equation (5). (c) Fit to equation (5) (thick solid line) along with zeroth (solid, thin), first (dotted), and second (dashed) derivative contributions.

Sadig Aghazada/ GMF group meeting
Stark/Electroabsorption Spectroscopy

![Graphs showing Stark/Electroabsorption Spectroscopy](image)

TABLE 3: Spectral Data and Stark Fitting Results for \(\text{M(CN)}_n^{4-}/\text{TiO}_2 \) Systems at 77 K in 50:50 Water–Ethylene Glycol

| \(\text{M(CN)}_n^{4-} \) | \(h\nu_{\text{max}, 77\text{K}} \) \(\times 10^3 \) cm\(^{-1} \) | \(|\mu_{12}| \) e\(\text{\AA}\) | \(|\Delta\mu_{12}|^a \) e\(\text{\AA}\) | \(|\Delta\mu_{ab}| \) e\(\text{\AA}\) | \(H_{ab}\) \(\times 10^3 \) cm\(^{-1} \) | \(\text{Tr}(\Delta\alpha)^c \) \(\) A\(^3\) | \(c_6^d \) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Fe(II)(CN)\(_6^4\) | 24.9 | 0.7 | 4.7 | 5.0 | 3.8 | 600 | 0.02 |
| Ru(II)(CN)\(_6^4\) | 28.9 | 0.6 | 4.1 | 4.2 | 4.3 | 700 | 0.02 |
| Mo(IV)(CN)\(_8^4\) | 21.9 | 0.4 | 4.5 | 4.6 | 1.9 | 1000 | 0.01 |
| W(IV)(CN)\(_8^4\) | 19.4 | 0.5 | 4.6 | 4.7 | 2.2 | 800 | 0.01 |

\(^a\) The estimated uncertainties are \(\approx 15\% \). \(^b\) Electronic-coupling element between the charge-transfer centers. \(^c\) Polarizability change between the ground and excited states (50\% uncertainty). \(^d\) Degree of delocalization between the charge-transfer centers.

J. Phys. Chem. B 2007, 111, 6695-6702
DFT and TD-DFT calculations

Figure 1. Optimized geometrical structure of the \([\text{Fe(CN)}_6]^{4-}\)/TiO\(_2\) system in the monodentate configuration. Main bond distances (Å) are reported. Grey = Ti, red = O, turquoise = N, brown = C and yellow = Fe atoms.

Figure 2. G03/B3LYP energy levels (eV) of the noninteracting \([\text{Fe(CN)}_6]^{4-}\) (left) and TiO\(_2\) (right) and interacting \([\text{Fe(CN)}_6]^{3-}/\text{TiO}_2\) (middle) systems in water solution. Blue (red) colors refer to states that are mostly localized on the dye (nanoparticle). Values in parentheses refer to TDDFT excitation energies.

DFT and TD-DFT calculations

Figure 3. Calculated optical absorption spectrum of [Fe(CN)₆]⁴⁻/TiO₂. Two of the orbitals involved in the transitions that maximally contribute to the intensity of the MPCT band are also shown.

Sadig Aghazada/ GMF group meeting
How to make an efficient solar cell based on MPCT?

Highest Occupied Molecular Orbital
Acceptor States
Extinction Coefficient
Recombination
Improving Optical and Charge Separation Properties of Nanocrystalline TiO$_2$ by Surface Modification with Vitamin C

T. Rajh,* J. M. Nedeljkovic, L. X. Chen, O. Poluektov, and M. C. Thurnauer

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

Received: January 14, 1999; In Final Form: March 11, 1999

Scheme 1. Molecular Structure of Ascorbic Acid before (a) and after (b) Binding to the Surface of Nanocrystalline TiO$_2$

Figure 3. Absorption spectra and surface structure of 0.05 M TiO$_2$ nanoparticles with different sizes before (TiO$_2$) and after surface modification with ascorbic acid (0.05 M TiO$_2$).
Thank You for Your Attention!